R/GOF_model.R
GOF_model.Rd
Simplifies the creation of an instance of GOF_model_test, the actual work horse for performing a goodness-of-fit-test.
GOF_model( model, data, nmb_boot_samples, simulator_type, y_name, Rn1_statistic, gof_model_resample_class = GOF_model_resample, gof_model_test_class = GOF_model_test )
model | of class 'lm' or 'glm'. Caution with MASS::glm.nb, see vignette 'New-Models' for more details. |
---|---|
data | see GOF_model_test |
nmb_boot_samples | see GOF_model_test |
simulator_type | either "parameteric" or "semi_parameteric_rademacher" |
y_name | see GOF_model_test |
Rn1_statistic | see GOF_model_test |
gof_model_resample_class | no need to change this parameter. Here the class used for resampling the model (GOF_model_resample) is injected. This parameter simply makes it easier to test the convenience function properly. |
gof_model_test_class | no need to change this parameter. Here the class used for performing the GOF test (GOF_model_test) is injected. This parameter simply makes it easier to test the convenience function properly. |
instance of GOF_model_test
set.seed(1) N <- 100 X1 <- rnorm(N) X2 <- rnorm(N) d <- data.frame( y = rpois(n = N, lambda = exp(4 + X1 * 2 + X2 * 6)), x1 = X1, x2 = X2) fit <- glm(y ~ x1, data = d, family = poisson()) mt <- GOF_model( model = fit, data = d, nmb_boot_samples = 100, simulator_type = "parametric", y_name = "y", Rn1_statistic = Rn1_KS$new()) mt$get_pvalue()#> [1] 0fit <- glm(y ~ x1 + x2, data = d, family = poisson()) mt <- GOF_model( model = fit, data = d, nmb_boot_samples = 100, simulator_type = "parametric", y_name = "y", Rn1_statistic = Rn1_KS$new()) mt$get_pvalue()#> [1] 0.61